论文标题

基于信任的协作过滤的图形嵌入的经验比较

Empirical Comparison of Graph Embeddings for Trust-Based Collaborative Filtering

论文作者

Duricic, Tomislav, Hussain, Hussain, Lacic, Emanuel, Kowald, Dominik, Helic, Denis, Lex, Elisabeth

论文摘要

在这项工作中,我们研究了图形嵌入的实用程序,以生成基于信任的协作过滤的潜在用户表示。在冷启动的环境中,在三个公开可用的数据集中,我们评估了四个方法系列中的方法:(i)基于分解的基于分解的基于步行,基于步行,(iii)基于深度学习的基于深度学习,以及(iv)大规模信息网络嵌入(线路)方法。我们发现,在这四个家庭中,基于随机步行的方法始终达到最佳准确性。此外,它们导致高度新颖和多样化的建议。此外,我们的结果表明,在基于信任的协作过滤中使用图形嵌入会大大改善用户覆盖范围。

In this work, we study the utility of graph embeddings to generate latent user representations for trust-based collaborative filtering. In a cold-start setting, on three publicly available datasets, we evaluate approaches from four method families: (i) factorization-based, (ii) random walk-based, (iii) deep learning-based, and (iv) the Large-scale Information Network Embedding (LINE) approach. We find that across the four families, random-walk-based approaches consistently achieve the best accuracy. Besides, they result in highly novel and diverse recommendations. Furthermore, our results show that the use of graph embeddings in trust-based collaborative filtering significantly improves user coverage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源