论文标题

从QoS分布到QoE分布:系统的角度

From QoS Distributions to QoE Distributions: a System's Perspective

论文作者

Hossfeld, Tobias, Heegaard, Poul E., Varela, Martin, Skorin-Kapov, Lea, Fiedler, Markus

论文摘要

在QOE管理的背景下,网络和服务提供商通常依赖于映射系统QoS条件(例如,系统响应时间,paket丢失等)的模型来估计的最终用户QoE值。可以假定系统中可观察到的QoS条件遵循一定的分布,这意味着不同的最终用户将经历不同的条件。另一方面,根据主观用户研究的结果,我们知道,用户多样性会导致任何给定的测试条件的用户分数分布(在这种情况下,指的是感兴趣的QoS参数)。我们以前的研究表明,要正确得出各种QOE指标(例如,在给定条件下的系统中,在系统中,用户评级“好或更好”等的均值(MOS),分位数,用户的概率,需要考虑从用户研究中获得的评级分布,这些评级分布通常是不可用的。在本文中,我们扩展了这些发现,以显示如何在QoS-MOS映射功能和二阶统计范围内近似用户评级分布。然后可以将这种用户评级分布与系统中观察到的QoS分布结合使用,以最终得出相应的QOE分布。我们提供了两个示例来说明此过程:1)使用Web QoE模型与等待时间与QoE相关的分析结果,以及2)使用将数据包丢失与视频失速模式相关的测量结果进行的数值结果,这些档案又映射到Qoe估计值。本文中的结果为理解系统中QoE分布的问题提供了解决方案,而如果必要的数据以超出MOS的模型的形式直接可用,或者没有主观实验的全部细节。

In the context of QoE management, network and service providers commonly rely on models that map system QoS conditions (e.g., system response time, paket loss, etc.) to estimated end user QoE values. Observable QoS conditions in the system may be assumed to follow a certain distribution, meaning that different end users will experience different conditions. On the other hand, drawing from the results of subjective user studies, we know that user diversity leads to distributions of user scores for any given test conditions (in this case referring to the QoS parameters of interest). Our previous studies have shown that to correctly derive various QoE metrics (e.g., Mean Opinion Score (MOS), quantiles, probability of users rating "good or better", etc.) in a system under given conditions, there is a need to consider rating distributions obtained from user studies, which are often times not available. In this paper we extend these findings to show how to approximate user rating distributions given a QoS-to-MOS mapping function and second order statistics. Such a user rating distribution may then be combined with a QoS distribution observed in a system to finally derive corresponding distributions of QoE scores. We provide two examples to illustrate this process: 1) analytical results using a Web QoE model relating waiting times to QoE, and 2) numerical results using measurements relating packet losses to video stall pattern, which are in turn mapped to QoE estimates. The results in this paper provide a solution to the problem of understanding the QoE distribution in a system, in cases where the necessary data is not directly available in the form of models going beyond the MOS, or where the full details of subjective experiments are not available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源