论文标题
高通量同位素反应堆中的非燃料抗毒素贡献
Nonfuel Antineutrino Contributions in the High Flux Isotope Reactor
论文作者
论文摘要
近年来,反应堆中微子实验的精度有了重大改善。随着实验不确定性的低于理论的不确定性,在做出理论预测时,请仔细考虑$ \overlineν_{e} $的所有来源很重要。 $ \overlineν_{e} $的一种来源通常是由反应堆中非燃料材料的照射引起的。这些来源的$ \Overlineν_{E} $速率和能量在反应堆循环期间根据反应器类型,配置和采样阶段的变化差异很大,必须独立考虑每个实验。在本文中,我们提出了一种形式主义,用于选择由反应堆和目标材料中的中子捕获引起的可能的$ \overlineν_{e} $。我们将这种形式主义应用于Oak Ridge国家实验室的高通量同位素反应堆(HFIR),即精密反应器振荡和光谱测量(前景)实验的$ \OverlineNν_{E} $源。总体而言,我们观察到,从HFIR到前景金额的非燃料$ \Overlineν_{E} $贡献高于倒数β衰减阈值1 \%,最大贡献在1.8--2.0〜MEV范围内为9 \%。对于HFIR等研究反应堆,非燃料贡献可能特别高,因为除了故意照射同位素生产目标材料外,还选择了结构和反射材料。我们表明,用低增强的铀加油的典型商业加压反应堆将显着较小的非燃料$ \OverlineNν_{E} $贡献。
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of $\overlineν_{e}$ is important when making theoretical predictions. One source of $\overlineν_{e}$ that is often neglected arises from the irradiation of the nonfuel materials in reactors. The $\overlineν_{e}$ rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible $\overlineν_{e}$ sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the $\overlineν_{e}$ source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel $\overlineν_{e}$ contributions from HFIR to PROSPECT amount to 1\% above the inverse beta decay threshold with a maximum contribution of 9\% in the 1.8--2.0~MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel $\overlineν_{e}$ contribution.