论文标题

在车辆云辅助网络中进行图形作业分配的真实拍卖

A Truthful Auction for Graph Job Allocation in Vehicular Cloud-assisted Networks

论文作者

Gao, Zhibin, LiWang, Minghui, Hosseinalipour, Seyyedali, Dai, Huaiyu, Wang, Xianbin

论文摘要

车辆云计算已成为一种有希望的解决方案,以满足用户对现代驾驶环境中处理计算密集型应用的需求。此类应用通常由由组件和边缘组成的图表表示。但是,鼓励车辆共享资源会构成用户的自私,构成了重大挑战。在本文中,考虑资源再利用化的车辆云辅助网络中,研究了基于拍卖的图作业分配问题。我们的目标是将每个买家(组件)映射到可行的卖方(虚拟机),同时最大化买家的服务效用,这涉及执行时间和佣金成本。首先,我们将基于拍卖的图表分配作为整数编程(IP)问题。然后,提出了一个基于维克里·克拉克 - 格林斯的支付规则,该规则满足了所需的经济特性,真实性和个人合理性。我们面临两个挑战:1)上述IP问题是NP-HARD; 2)与IP问题相关的一个约束提出了解决子图同构问题的问题。因此,在大规模网络中,获得最佳解决方案实际上是不可行的。通过它,我们通过最大限度地提高服务效率获得,以及提供经济属性和低计算复杂性的相应支付规则来开发结构保存的匹配算法。广泛的模拟表明,考虑到各种问题大小的基准方法,所提出的算法的表现优于基准方法。

Vehicular cloud computing has emerged as a promising solution to fulfill users' demands on processing computation-intensive applications in modern driving environments. Such applications are commonly represented by graphs consisting of components and edges. However, encouraging vehicles to share resources poses significant challenges owing to users' selfishness. In this paper, an auction-based graph job allocation problem is studied in vehicular cloud-assisted networks considering resource reutilization. Our goal is to map each buyer (component) to a feasible seller (virtual machine) while maximizing the buyers' utility-of-service, which concerns the execution time and commission cost. First, we formulate the auction-based graph job allocation as an integer programming (IP) problem. Then, a Vickrey-Clarke-Groves based payment rule is proposed which satisfies the desired economical properties, truthfulness and individual rationality. We face two challenges: 1) the above-mentioned IP problem is NP-hard; 2) one constraint associated with the IP problem poses addressing the subgraph isomorphism problem. Thus, obtaining the optimal solution is practically infeasible in large-scale networks. Motivated by which, we develop a structure-preserved matching algorithm by maximizing the utility-of-service-gain, and the corresponding payment rule which offers economical properties and low computation complexity. Extensive simulations demonstrate that the proposed algorithm outperforms the benchmark methods considering various problem sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源