论文标题
盲目置换相似性算法
A Blind Permutation Similarity Algorithm
论文作者
论文摘要
本文介绍了一种多项式盲算法,该算法确定何时两个方形矩阵$ a $和$ b $相似。移位和翻译的矩阵$(A+βI+γJ)$和$(B+βI+γj)$用于为两个正方形的边缘加权,Rook的图形颜色。然后通过重复的顶点颜色和边缘加权邻接矩阵的符号平方来找到轨道。来自非渗透类似矩阵的对角线符号的多组在几个迭代中是不同的,通常四个或更少。
This paper introduces a polynomial blind algorithm that determines when two square matrices, $A$ and $B$, are permutation similar. The shifted and translated matrices $(A+βI+γJ)$ and $(B+βI+γJ)$ are used to color the vertices of two square, edge weighted, rook's graphs. Then the orbits are found by repeated symbolic squaring of the vertex colored and edge weighted adjacency matrices. Multisets of the diagonal symbols from non-permutation similar matrices are distinct within a few iterations, typically four or less.