论文标题

在大电场下,在散装硅中的磷供体的电子自旋松弛

Electron spin relaxations of phosphorus donors in bulk silicon under large electric field

论文作者

Park, Daniel K., Park, Sejun, Jee, Hyejung, Lee, Soonchil

论文摘要

通过电场调节供体电子波函数对于基于硅供体旋转的量子计算体系结构至关重要。对于实际且可扩展的应用,基于供体的量子位必须在任何现实的实验条件下保留足够长的连贯时间。在这里,我们在纵向$(T_1)$(T_1)$和横向$(T_2)$的脉冲电子自旋共振研究中进行了散装硅供体放松时间,在大约1.2 t的高磁场中,在高度的高温下,在大约8 k的高温下,$ T_1 $ the $ t_1 $ heiveraliation $ t_1 $ the $ t_1 $。 $ t_2 $受到影响,因为$ t_1 $流程可以主导变形。此外,我们表明,可以利用硅中的磁化效应,作为打击相干时间减少的一种手段。虽然值相干时间必须比量子栅极时间更长,但当Qubit状态初始化依赖于热平衡时,电气加速的$ T_1 $很有用。

Modulation of donor electron wavefunction via electric fields is vital to quantum computing architectures based on donor spins in silicon. For practical and scalable applications, the donor-based qubits must retain sufficiently long coherence times in any realistic experimental conditions. Here, we present pulsed electron spin resonance studies on the longitudinal $(T_1)$ and transverse $(T_2)$ relaxation times of phosphorus donors in bulk silicon with various electric field strengths up to near avalanche breakdown in high magnetic fields of about 1.2 T and low temperatures of about 8 K. We find that the $T_1$ relaxation time is significantly reduced under large electric fields due to electric current, and $T_2$ is affected as the $T_1$ process can dominate decoherence. Furthermore, we show that the magnetoresistance effect in silicon can be exploited as a means to combat the reduction in the coherence times. While qubit coherence times must be much longer than quantum gate times, electrically accelerated $T_1$ can be found useful when qubit state initialization relies on thermal equilibration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源