论文标题
具有多余致动的岩浆平台的有效劳动力敏锐的解耦和混合振动隔离控制
Payload-agnostic Decoupling and Hybrid Vibration Isolation Control for a Maglev Platform with Redundant Actuation
论文作者
论文摘要
特定于有效载荷的振动控制可能适合特定任务,但缺乏适应各种有效载荷所需的一般性和转移性。自我耦合和稳健的振动控制是实现有效载荷振动控制的关键问题。但是,仍然存在问题。 在本文中,我们提出了一个Maglev振动隔离平台(MVIP),该平台的目的是在动态环境下衰减有效载荷 - 不合稳定任务中的振动。由于试图抑制干扰的努力将遇到不可避免的耦合问题,因此我们分析了导致它的原因,并提出了独特而有效的解决方案。 为了实现有效载荷不合时宜的振动控制,我们提出了一种新的控制策略,这是本文的主要贡献。它由一个自我构造的径向基函数神经网络倒置(SRBFNNI)解耦方案和混合自适应馈送前馈内部模型控制(HAFIMC)组成。前者使MVIP能够创建一个几乎没有先验知识并实现自我结束的自我逆模型。对于MVIP的唯一结构,拟议的HAFIMC陈述和解决了振动控制问题,该问题利用自适应部分来处理周期性干扰和内部模式部分来处理稳定性。
Payload-specific vibration control may be suitable for a particular task but lacks generality and transferability required for adapting to the various payload. Self-decoupling and robust vibration control are the crucial problems to achieve payload-agnostic vibration control. However, there are problems still unsolved. In this article, we present a maglev vibration isolation platform (MVIP), which aims to attenuate vibration in the payload-agnostic task under a dynamic environment. Since efforts trying to suppress disturbance will encounter inevitable coupling problems, we analyzed the reasons resulting in it and proposed unique and effective solutions. To achieve payload-agnostic vibration control, we proposed a new control strategy, which is the main contribution of this article. It consists of a self-construct radial basis function neural network inversion (SRBFNNI) decoupling scheme and hybrid adaptive feed-forward internal model control (HAFIMC). The former one enables the MVIP to create a self inverse model with little prior knowledge and achieving self-decoupling. For the unique structure of MVIP, the vibration control problem is stated and addressed by the proposed HAFIMC, which utilizes the adaptive part to deal with the periodical disturbance and the internal mode part to deal with the stability.