论文标题
基于混合注意力的变压器块模型,用于远程监督关系提取
Hybrid Attention-Based Transformer Block Model for Distant Supervision Relation Extraction
论文作者
论文摘要
通过各种数字文本信息的指数爆炸性增长,有效地从大量的非结构化文本信息中获得特定的知识是一项挑战。作为自然语言处理(NLP)的一项基本任务,关系提取旨在根据给定文本提取实体对之间的语义关系。为了避免手动标记数据集,已广泛使用了遥远的监督关系提取(DSRE),旨在利用知识库自动注释数据集。不幸的是,由于基本的强大假设,这种方法严重遭受了错误的标记。为了解决这个问题,我们使用基于混合注意力的变压器块提出了一个新的框架,并通过多个实体学习来执行DSRE任务。更具体地说,变压器块首先用作捕获句子句法信息的句子编码器,该句子主要利用多头自我注意来从单词级别提取特征。然后,采用了更简洁的句子级别的注意机制来构成行李的表示,旨在纳入每个句子的有效信息以有效地表示包。公共数据集纽约时报(NYT)的实验结果表明,所提出的方法可以胜过评估数据集中最新的算法,该算法验证了我们模型对DSRE任务的有效性。
With an exponential explosive growth of various digital text information, it is challenging to efficiently obtain specific knowledge from massive unstructured text information. As one basic task for natural language processing (NLP), relation extraction aims to extract the semantic relation between entity pairs based on the given text. To avoid manual labeling of datasets, distant supervision relation extraction (DSRE) has been widely used, aiming to utilize knowledge base to automatically annotate datasets. Unfortunately, this method heavily suffers from wrong labelling due to the underlying strong assumptions. To address this issue, we propose a new framework using hybrid attention-based Transformer block with multi-instance learning to perform the DSRE task. More specifically, the Transformer block is firstly used as the sentence encoder to capture syntactic information of sentences, which mainly utilizes multi-head self-attention to extract features from word level. Then, a more concise sentence-level attention mechanism is adopted to constitute the bag representation, aiming to incorporate valid information of each sentence to effectively represent the bag. Experimental results on the public dataset New York Times (NYT) demonstrate that the proposed approach can outperform the state-of-the-art algorithms on the evaluation dataset, which verifies the effectiveness of our model for the DSRE task.