论文标题
完美的状态转移的光谱在类似分形图上
Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs
论文作者
论文摘要
在本文中,我们研究了在类似分形图上的光谱特征,这些特征表现出完美量子状态传递的特殊特性:量子状态的传播而没有消散。基本目标是开发理论框架,以理解完美的量子状态传递,光谱特性和基础图的几何形状之间的相互作用,以设计用于量子信息科学应用的新颖协议。我们提出了一种新的举重和胶合结构,并使用它来证明有关感应光谱结构的结果,适用于各种分形状图。我们用明确的例子说明了这一结构,该构造的示例是几类钻石图。
In this paper we study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer: the transmission of quantum states without dissipation. The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph, in order to design novel protocols for applications in quantum information science. We present a new lifting and gluing construction, and use this to prove results concerning an inductive spectral structure, applicable to a wide variety of fractal-like graphs. We illustrate this construction with explicit examples for several classes of diamond graphs.