论文标题

利用低级协方差结构来计算高维正常和学生-T $ $ t $概率

Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student-$t$ Probabilities

论文作者

Cao, Jian, Genton, Marc G., Keyes, David E., Turkiyyah, George M.

论文摘要

我们提出了一种预处理的蒙特卡洛方法,用于计算空间统计数据中产生的高维多元正常和学生$ t $概率。该方法结合了协方差矩阵的瓷砖 - 低级表示与有效的准蒙特卡洛仿真的块状序列方案。瓷砖 - 低位的表示将高维问题分解为许多对角线块大小的问题和低级连接。重订单方案在对角线块之间和内部的重新定位,以减少整合变量的影响,从而提高了蒙特卡洛收敛速率。仿真至尺寸$ 65 {,} 536 $表明,与非重新测定的瓷砖 - 低率准蒙特卡洛方法相比,新方法可以通过数量级来改善运行时间,而与密集的准蒙特特carlo方法相比我们的方法还形成了近似调理方法的有力替代品,作为具有错误保证的更强大的估计。提供了对风随机发电机的申请研究,以说明新的计算方法使高维偏度正常随机场可行的最大似然估计。

We present a preconditioned Monte Carlo method for computing high-dimensional multivariate normal and Student-$t$ probabilities arising in spatial statistics. The approach combines a tile-low-rank representation of covariance matrices with a block-reordering scheme for efficient Quasi-Monte Carlo simulation. The tile-low-rank representation decomposes the high-dimensional problem into many diagonal-block-size problems and low-rank connections. The block-reordering scheme reorders between and within the diagonal blocks to reduce the impact of integration variables from right to left, thus improving the Monte Carlo convergence rate. Simulations up to dimension $65{,}536$ suggest that the new method can improve the run time by an order of magnitude compared with the non-reordered tile-low-rank Quasi-Monte Carlo method and two orders of magnitude compared with the dense Quasi-Monte Carlo method. Our method also forms a strong substitute for the approximate conditioning methods as a more robust estimation with error guarantees. An application study to wind stochastic generators is provided to illustrate that the new computational method makes the maximum likelihood estimation feasible for high-dimensional skew-normal random fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源