论文标题

有效妨碍从积极特征提升泰特班级

Effective obstruction to lifting Tate classes from positive characteristic

论文作者

Costa, Edgar, Sertöz, Emre Can

论文摘要

我们给出了一种在数字字段上采用平滑性的算法,并计算有限降低的泰特类别的阻塞图的$ p $ - ad近似。这给出了高空表面的“中间PICARD号”上的上限。对现有方法的改进是,我们的方法仅依赖于单个质量降低,并有可能将泰特类的维度减少两个或更多。阻塞图来自$ p $ - ad的变异性霍奇猜想,我们依靠Bloch-Esnault-Kerz最近的进步来解释我们的界限。

We give an algorithm that takes a smooth hypersurface over a number field and computes a $p$-adic approximation of the obstruction map on the Tate classes of a finite reduction. This gives an upper bound on the "middle Picard number" of the hypersurface. The improvement over existing methods is that our method relies only on a single prime reduction and gives the possibility of cutting down on the dimension of Tate classes by two or more. The obstruction map comes from $p$-adic variational Hodge conjecture and we rely on the recent advancement by Bloch-Esnault-Kerz to interpret our bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源