论文标题
表面重力对波长范围内线深度比的影响0.97-1.32μm
The effect of surface gravity on line-depth ratios in the wavelength range 0.97-1.32 μm
论文作者
论文摘要
两种具有不同激发电位的光谱线的线深度比(LDR)与有效温度($ t_ \ mathrm {eff} $)相关。如果可以使用数十个或数百个紧密的ldr- $ t_ \ mathrm {eff} $,则可以确定具有数十个kelvin精度的星星的$ t_ \ mathrm {eff} $。先前关于LDR方法的大多数研究仅限于光学波长,但Taniguchi和合作者报告了2018年$ YJ $ band中的81个LDR关系,0.97-1.32 $ \ Mathrm {M Mathrm {M Mathrm {M} $。但是,只有10个巨人的样本就无法说明表面壁板的效果和效果。在这里,我们根据63颗恒星的$ yj $频带光谱进行了重力效应,其中包括矮人,巨人和超级巨人,并观察到了wonered光谱仪。我们发现,某些LDR- $ T_ \ MATHRM {eff} $关系在矮人的顺序和巨人/超级巨人的序列之间显示出清晰的偏移。每条线对中考虑的元素的电离电位与深度相应差的元素之间的差异可以至少部分解释LDR对表面重力的依赖性。为了扩展LDR方法可以高精度覆盖的恒星参数范围,我们分别获得了Solar-Metal G0-K4 Dwarfs和F7-K5 Supergiants的LDR- $ T_ \ Mathrm {eff} $关系的新集合。对于矮人和超级巨人来说,通过我们的关系可以实现的典型精度是10-30 K。
A line-depth ratio (LDR) of two spectral lines with different excitation potentials is expected to be correlated with the effective temperature ($T_\mathrm{eff}$). It is possible to determine $T_\mathrm{eff}$ of a star with a precision of tens of Kelvin if dozens or hundreds of tight LDR-$T_\mathrm{eff}$ relations can be used. Most of the previous studies on the LDR method were limited to optical wavelengths, but Taniguchi and collaborators reported 81 LDR relations in the $YJ$ band, 0.97-1.32 $μ\mathrm{m}$, in 2018. However, with their sample of only 10 giants, it was impossible to account for the effects of surface gravity and metallicity on the LDRs well. Here we investigate the gravity effect based on $YJ$-band spectra of 63 stars including dwarfs, giants, and supergiants observed with the WINERED spectrograph. We found that some LDR-$T_\mathrm{eff}$ relations show clear offsets between the sequence of dwarfs and those of giants/supergiants. The difference between the ionization potentials of the elements considered in each line pair and the corresponding difference in the depths can, at least partly, explain the dependency of the LDR on the surface gravity. In order to expand the stellar parameter ranges that the LDR method can cover with high precision, we obtained new sets of LDR-$T_\mathrm{eff}$ relations for solar-metal G0-K4 dwarfs and F7-K5 supergiants, respectively. The typical precision that can be achieved with our relations is 10-30 K for both dwarfs and supergiants.