论文标题

拓扑液体边缘的热平衡

Thermal equilibration on the edges of topological liquids

论文作者

Ma, Ken K. W., Feldman, D. E.

论文摘要

在量子大厅效应及其他地区,导电电导已成为强大的拓扑顺序探针。实验的解释至关重要地取决于样本量和平衡长度的比率,在这种情况下,相互传播的手性模式之间的能量交换变得很重要。我们表明,在低温下,平衡长度的分歧为$ 1/t^2 $,几乎所有阿贝利安和非阿贝尔拓扑订单。非亚伯pH-Pfaffian和负频率读取雷扎伊液体的边缘上存在更快的$ 1/t^4 $差异。我们解决了样本中$ 1/t^2 $和$ 1/t^4 $法律的实验后果,比平衡长度短。

Thermal conductance has emerged as a powerful probe of topological order in the quantum Hall effect and beyond. The interpretation of experiments crucially depends on the ratio of the sample size and the equilibration length, on which energy exchange among contra-propagating chiral modes becomes significant. We show that at low temperatures the equilibration length diverges as $1/T^2$ for almost all Abelian and non-Abelian topological orders. A faster $1/T^4$ divergence is present on the edges of the non-Abelian PH-Pfaffian and negative-flux Read-Rezayi liquids. We address experimental consequences of the $1/T^2$ and $1/T^4$ laws in a sample, shorter than the equilibration length.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源