论文标题

多任务学习增强了单图像

Multi-Task Learning Enhanced Single Image De-Raining

论文作者

Fan, Yulong, Chen, Rong, Li, Bo

论文摘要

图像中的降雨是提交计算机视觉的重要任务,并吸引了越来越多的人的注意。在本文中,我们解决了从单个图像中消除雨条的视觉效果的非平凡问题。与现有工作不同,我们的方法将各种语义约束任务结合在提议的多任务回归模型中,以进行降雨。这些任务分别从内容,边缘感知和本地纹理相似性中加强了模型的功能。为了进一步提高多任务学习的性能,我们还提出了两种简单但强大的动态加权算法。拟议的多任务增强网络(MENET)是基于U-NET进行降雨研究的强大卷积神经网络,其特定的重点是利用多个任务约束,并利用它们之间的协同作用,以促进模型的降雨清除能力。值得注意的是,自适应加权方案进一步提高了网络能力。我们对合成和真实降雨图像进行了几项实验,并在几种选定的最新方法(SOTA)方法上实现了出色的降雨表现。即使在大雨和雨条的分解中,我们方法的总体效果令人印象深刻。源代码和某些结果可以在以下网址找到:https://github.com/sumimihui/menet。

Rain removal in images is an important task in computer vision filed and attracting attentions of more and more people. In this paper, we address a non-trivial issue of removing visual effect of rain streak from a single image. Differing from existing work, our method combines various semantic constraint task in a proposed multi-task regression model for rain removal. These tasks reinforce the model's capabilities from the content, edge-aware, and local texture similarity respectively. To further improve the performance of multi-task learning, we also present two simple but powerful dynamic weighting algorithms. The proposed multi-task enhanced network (MENET) is a powerful convolutional neural network based on U-Net for rain removal research, with a specific focus on utilize multiple tasks constraints and exploit the synergy among them to facilitate the model's rain removal capacity. It is noteworthy that the adaptive weighting scheme has further resulted in improved network capability. We conduct several experiments on synthetic and real rain images, and achieve superior rain removal performance over several selected state-of-the-art (SOTA) approaches. The overall effect of our method is impressive, even in the decomposition of heavy rain and rain streak accumulation.The source code and some results can be found at:https://github.com/SumiHui/MENET.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源