论文标题
与博学的先验的非对抗性视频合成
Non-Adversarial Video Synthesis with Learned Priors
论文作者
论文摘要
视频综合中的大多数现有作品都集中在使用对抗性学习生成视频。尽管它们取得了成功,但这些方法通常需要输入参考框架或无法从给定的数据分发中生成各种视频,而可以生成的视频质量几乎没有统一。与这些方法不同,我们专注于从潜在噪声向量生成视频的问题,而没有任何参考输入帧。为此,我们开发了一种新颖的方法,可以通过非对抗性学习共同优化输入潜在空间,复发性神经网络的权重和发电机。对输入潜在空间以及网络权重进行优化,使我们能够在受控环境中生成视频,即,我们可以忠实地生成模型在学习过程中看到的所有视频以及新的未看到视频。关于三个具有挑战性和不同数据集的大量实验很好地表明,与现有的最新方法相比,我们的方法产生了卓越的质量视频。
Most of the existing works in video synthesis focus on generating videos using adversarial learning. Despite their success, these methods often require input reference frame or fail to generate diverse videos from the given data distribution, with little to no uniformity in the quality of videos that can be generated. Different from these methods, we focus on the problem of generating videos from latent noise vectors, without any reference input frames. To this end, we develop a novel approach that jointly optimizes the input latent space, the weights of a recurrent neural network and a generator through non-adversarial learning. Optimizing for the input latent space along with the network weights allows us to generate videos in a controlled environment, i.e., we can faithfully generate all videos the model has seen during the learning process as well as new unseen videos. Extensive experiments on three challenging and diverse datasets well demonstrate that our approach generates superior quality videos compared to the existing state-of-the-art methods.