论文标题
整数环筛,用于构造带有围栏8、10和12的紧凑型QC-LDPC代码
Integer Ring Sieve for Constructing Compact QC-LDPC Codes with Girths 8, 10, and 12
论文作者
论文摘要
本文提出了一种构建紧凑型完全连接的准循环低密度平价检查(QC-LDPC)代码的新方法,该代码具有Girth G = 8、10和12的代码。所提出的方法的独创性是对指数矩阵P上的约束构成约束,以大大减少搜索空间。对于n的靶向起重度,该方法的第一步是筛选整数环z_n,使特定的子组具有特定属性,以构造P的第二列(第一列填充了ZEROS)。通过调整顺序乘以列(SMC)方法,在每个步骤中应用受控的贪婪搜索,将P的其余列作为第二列的倍数递归确定。用拟议的半代数方法构建的代码显示的长度可能比文献中最好的对应物要短得多。
This paper proposes a new method of constructing compact fully-connected Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes with girth g = 8, 10, and 12. The originality of the proposed method is to impose constraints on the exponent matrix P to reduce the search space drastically. For a targeted lifting degree of N, the first step of the method is to sieve the integer ring Z_N to make a particular sub-group with specific properties to construct the second column of P (the first column being filled with zeros). The remaining columns of P are determined recursively as multiples of the second column by adapting the sequentially multiplied column (SMC) method whereby a controlled greedy search is applied at each step. The codes constructed with the proposed semi-algebraic method show lengths that can be significantly shorter than their best counterparts in the literature.