论文标题

通过深层生成网络检测天文图像中的离群值

Detecting outliers in astronomical images with deep generative networks

论文作者

Margalef-Bentabol, Berta, Huertas-Company, Marc, Charnock, Tom, Margalef-Bentabol, Carla, Bernardi, Mariangela, Dubois, Yohan, Storey-Fisher, Kate, Zanis, Lorenzo

论文摘要

随着未来大数据调查的出现,无监督发现的自动化工具变得越来越必要。在这项工作中,我们探讨了深层生成网络检测天文成像数据集中离群值的能力。这种生成模型的主要优点是他们能够直接从像素空间中学习复杂的表示。因此,这些方法使我们能够寻找细微的形态偏差,这些偏差通常会被基于矩的传统方法所遗漏。我们使用生成模型来学习由训练集定义的预期数据的表示,然后通过寻找对给定对象的最佳重建来寻找与学习表示的偏差。在首次概念验证工作中,我们将方法应用于两个不同的测试用例。我们首先证明,从一组模拟星系中,如果我们仅使用一个孤立的星系训练网络,我们可以检测到合并星系的$ \ sim90 \%$。然后,我们探讨了如何通过识别模型中观察到的星系来识别观察结果和流体动力学模拟如何使用所呈现的方法。

With the advent of future big-data surveys, automated tools for unsupervised discovery are becoming ever more necessary. In this work, we explore the ability of deep generative networks for detecting outliers in astronomical imaging datasets. The main advantage of such generative models is that they are able to learn complex representations directly from the pixel space. Therefore, these methods enable us to look for subtle morphological deviations which are typically missed by more traditional moment-based approaches. We use a generative model to learn a representation of expected data defined by the training set and then look for deviations from the learned representation by looking for the best reconstruction of a given object. In this first proof-of-concept work, we apply our method to two different test cases. We first show that from a set of simulated galaxies, we are able to detect $\sim90\%$ of merging galaxies if we train our network only with a sample of isolated ones. We then explore how the presented approach can be used to compare observations and hydrodynamic simulations by identifying observed galaxies not well represented in the models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源