论文标题

停留:探索对基于深层学习的交通拥堵控制系统的后门攻击

Stop-and-Go: Exploring Backdoor Attacks on Deep Reinforcement Learning-based Traffic Congestion Control Systems

论文作者

Wang, Yue, Sarkar, Esha, Li, Wenqing, Maniatakos, Michail, Jabari, Saif Eddin

论文摘要

最近的工作表明,在交通中引入自动驾驶汽车(AV)可以帮助减少交通拥堵。深度强化学习方法在复杂的控制问题(包括自动驾驶汽车控制)中表现出良好的性能,并已用于最先进的AV控制器。但是,深度神经网络(DNNS)使自动驾驶容易受到基于机器学习的攻击。在这项工作中,我们探讨了基于DRL的AV控制器的后门/木马。我们开发了一种基于交通物理原理的触发设计方法。恶意行动包括车辆减速和加速度,导致停止交通浪潮出现(拥塞攻击)或AV加速,导致AV在前面撞向车辆(保险攻击)。我们测试了对单车道和两车道电路的攻击。我们的实验结果表明,后门模型不会损害正常运行性能,累积奖励的最大减少为1%。尽管如此,当相应的触发器出现时,可能会被恶意激活以引起崩溃或拥塞。

Recent work has shown that the introduction of autonomous vehicles (AVs) in traffic could help reduce traffic jams. Deep reinforcement learning methods demonstrate good performance in complex control problems, including autonomous vehicle control, and have been used in state-of-the-art AV controllers. However, deep neural networks (DNNs) render automated driving vulnerable to machine learning-based attacks. In this work, we explore the backdooring/trojanning of DRL-based AV controllers. We develop a trigger design methodology that is based on well-established principles of traffic physics. The malicious actions include vehicle deceleration and acceleration to cause stop-and-go traffic waves to emerge (congestion attacks) or AV acceleration resulting in the AV crashing into the vehicle in front (insurance attack). We test our attack on single-lane and two-lane circuits. Our experimental results show that the backdoored model does not compromise normal operation performance, with the maximum decrease in cumulative rewards being 1%. Still, it can be maliciously activated to cause a crash or congestion when the corresponding triggers appear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源