论文标题
通过凸优化控制传播过程的稀疏资源分配
Sparse Resource Allocation for Control of Spreading Processes via Convex Optimization
论文作者
论文摘要
在这封信中,我们提出了一种使用凸优化的资源稀疏分配来控制传播过程(例如流行病和野火)的方法,特别是指数锥编程。分配的稀疏性在无法轻易在大面积上分配资源的情况下具有优势。此外,我们还引入了一种风险模型,以优化可能性的产物和爆发的未来影响。我们以简化的野火示例证明,与基于几何编程的先前方法相比,我们的方法可以提供更多针对性的资源分配。
In this letter we propose a method for sparse allocation of resources to control spreading processes -- such as epidemics and wildfires -- using convex optimization, in particular exponential cone programming. Sparsity of allocation has advantages in situations where resources cannot easily be distributed over a large area. In addition, we introduce a model of risk to optimize the product of the likelihood and the future impact of an outbreak. We demonstrate with a simplified wildfire example that our method can provide more targeted resource allocation compared to previous approaches based on geometric programming.