论文标题

在某些多项式矩阵的左侧,并应用于卷积代码

On the left primeness of some polynomial matrices with applications to convolutional codes

论文作者

Alfarano, Gianira N., Lieb, Julia

论文摘要

最大距离(MDP)卷积代码具有其列距离在给定速率和程度上尽可能大的属性。存在一个众所周知的标准,可以检查代码是使用发电机还是代码的奇偶校验检查矩阵的代码。 在本文中,我们表明,在假设$ n-k $划分$δ$或$ k $ divide $δ$的假设下,符合MDP标准的多项式矩阵实际上总是剩下的。特别是,当$ k $划分$δ$时,这意味着每个MDP卷积代码都是非cataTASTROPHIC。此外,当$ n-k $和$ k $不划分$δ$时,我们表明MDP标准一般不足以确保左手的灵感。在这种情况下,有了一个假设,我们仍然可以保证结果。

Maximum distance profile (MDP) convolutional codes have the property that their column distances are as large as possible for given rate and degree. There exists a well-known criterion to check whether a code is MDP using the generator or the parity-check matrix of the code. In this paper, we show that under the assumption that $n-k$ divides $δ$ or $k$ divides $δ$, a polynomial matrix that fulfills the MDP criterion is actually always left prime. In particular, when $k$ divides $δ$, this implies that each MDP convolutional code is noncatastrophic. Moreover, when $n-k$ and $k$ do not divide $δ$, we show that the MDP criterion is in general not enough to ensure left primeness. In this case, with one more assumption, we still can guarantee the result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源