论文标题

一维离散时间量子步行中高纠缠产生的通用和最佳硬币序列

Universal and optimal coin sequences for high entanglement generation in 1D discrete time quantum walks

论文作者

Gratsea, Aikaterini, Metz, Friederike, Busch, Thomas

论文摘要

纠缠是许多量子信息应用程序中的关键资源,并且独立于初始条件而实现高价值是一项重要任务。在这里,我们解决了在离散时间量子步行中生成高度纠缠状态的问题,无论使用两种不同的方法对初始状态如何。首先,我们介绍和分析硬币运算符的确定性序列,该序列以普遍的方式为一类局部初始状态产生较高的纠缠值。在第二种方法中,我们使用增强学习算法直接优化了硬币运算符的顺序。尽管确定序列产生的纠缠量完全独立于所考虑的初始状态,但优化序列在一般较高的纠缠平均值中实现,但确实取决于初始状态参数。在初始状态尚不完全了解或必须以通用方式生成一系列初始状态的情况下,我们提出的序列和优化算法在初始状态尚不完全了解或纠缠的情况下特别有用。

Entanglement is a key resource in many quantum information applications and achieving high values independently of the initial conditions is an important task. Here we address the problem of generating highly entangled states in a discrete time quantum walk irrespective of the initial state using two different approaches. First, we present and analyze a deterministic sequence of coin operators which produces high values of entanglement in a universal manner for a class of localized initial states. In a second approach, we directly optimize the sequence of coin operators using a reinforcement learning algorithm. While the amount of entanglement produced by the deterministic sequence is fully independent of the initial states considered, the optimized sequences achieve in general higher average values of entanglement that do however depend on the initial state parameters. Our proposed sequence and optimization algorithm are especially useful in cases where the initial state is not fully known or entanglement has to be generated in a universal manner for a range of initial states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源