论文标题

跨光谱测量统计

Cross-Spectrum Measurement Statistics

论文作者

Baudiquez, Antoine, Lantz, Éric, Rubiola, Enrico, Vernotte, François

论文摘要

跨光谱方法包括与两种独立仪器同时测量信号$ c(t)$。这些仪器中的每一个都通过其Intrinsec(白色)噪声导致了全球噪声,而我们想要表征的信号$ c(t)$可能是(红色)噪声。我们首先将跨光谱的实际部分定义为相关的估计器。然后,我们将此估计值的概率密度函数(PDF)描述为知道噪声水平(直接问题)作为方差 - 脉冲(v $γ$)分布。接下来,由于贝叶斯定理,我们解决了“逆问题”,以获得噪声水平的上限,了解估计值。经过大规模的蒙特卡洛模拟检查,V $γ$证明对任何数量的自由度(DOF)非常可靠。最后,我们将此方法与使用Karhunen-LoèveTransfrom(KLT)的其他方法进行了比较。由于KLT更好地考虑了可用的信息,因此我们发现信号级别的上限略有不同。

The cross-spectrum method consists in measuring a signal $c(t)$ simultaneously with two independent instruments. Each of these instruments contributes to the global noise by its intrinsec (white) noise, whereas the signal $c(t)$ that we want to characterize could be a (red) noise. We first define the real part of the cross-spectrum as a relevant estimator. Then, we characterize the probability density function (PDF) of this estimator knowing the noise level (direct problem) as a Variance-Gamma (V$Γ$) distribution. Next, we solve the "inverse problem" thanks to Bayes' theorem to obtain an upper limit of the noise level knowing the estimate. Checked by massive Monte Carlo simulations, V$Γ$ proves to be perfectly reliable to any number of degrees of freedom (dof). Finally we compare this method with an other method using the Karhunen-Loève transfrom (KLT). We find an upper limit of the signal level slightly different as the one of V$Γ$ since KLT better takes into account the available informations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源