论文标题
在COVID-19大流行时期,用于提高洗涤意识的机器学习应用
A Machine Learning Application for Raising WASH Awareness in the Times of COVID-19 Pandemic
论文作者
论文摘要
背景:COVID-19大流行揭示了数字错误信息在塑造国家健康方面的潜力。传播速度比流行病本身更快的未经验证的信息是一种前所未有的现象,使数百万生命处于危险之中。缓解这种不良血症需要强大的健康消息系统,这些消息传递系统具有引人入胜的,可扩展的,有效的,并且不断地学习新的错误信息模式。 目的:我们创建了Washkaro,这是一种多管齐下的干预措施,用于通过对话AI,机器翻译和自然语言处理来减轻错误信息。 Washkaro提供了与WHO通过AI指南相匹配的正确信息,并以当地语言的形式提供正确的格式。 方法:我们理论化(i)基于NLP的AI引擎,可以连续合并用户反馈以提高信息的相关性,(ii)在本地语言中咬合大小的音频,以改善性别识字率偏斜的国家的渗透率,以及(iii)对话但因此可以与用户与用户互动的互动性AI互动,以提高社区的健康认识。结果:在学习窗口期间,总共有5026人在研究窗口中下载了该应用程序,其中1545名是活跃的用户。我们的研究表明,与男性相比,与该应用程序相比,与该应用程序互动的女性的3.4倍,AI过滤新闻内容的相关性在连续机器学习的45天内翻了一番,并且综合AI Chatbot Satya的审慎性增加了MHealth平台来缓解健康误解的实用性。 结论:我们得出的结论是,提供白话大小的音频和会话AI的多管齐下的机器学习应用程序是减轻健康错误信息的有效方法。
Background: The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this Infodemic requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. Objective: We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. Methods: We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. Results: A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot Satya increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. Conclusion: We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation.