论文标题
纠缠结构的循环综合学
Cyclic cohomology of entwining structures
论文作者
论文摘要
在本文中,我们介绍并研究了一个环状结构$(a,c,ψ)$ $ h^\bullet_λ$(a,c,ψ)$的循环结构$(a,c,ψ)$。然后,我们使用应用于$(A,C,C,ψ)$上的DG固定结构的缠绕痕迹,完整地描述了该理论中的共生和串联。然后,我们将这些描述应用于构建配对$ h^m_λ(a,c,ψ)\ otimes h^n_λ(a',c',c',ψ')\ longrightArrow h^{m+n}_λ(a \ otimes a',a',c \ otimes a',c \ otime c' $(a',c',ψ')$是纠缠结构。
In this paper, we introduce and study a cyclic cohomology theory $H^\bullet_λ(A,C,ψ)$ for an entwining structure $(A,C,ψ)$ over a field $k$. We then provide a complete description of the cocycles and the coboundaries in this theory using entwined traces applied to dg-entwining structures over $(A,C,ψ)$. We then apply these descriptions to construct a pairing $ H^m_λ(A,C,ψ) \otimes H^n_λ(A',C',ψ') \longrightarrow H^{m+n}_λ(A \otimes A', C \otimes C', ψ\otimes ψ') $, where $(A,C,ψ)$ and $(A',C',ψ')$ are entwining structures.