论文标题

Geniex:一种使用神经网络模仿XBAR的非理想性的广义方法

GENIEx: A Generalized Approach to Emulating Non-Ideality in Memristive Xbars using Neural Networks

论文作者

Chakraborty, Indranil, Ali, Mustafa Fayez, Kim, Dong Eun, Ankit, Aayush, Roy, Kaushik

论文摘要

由于各种非理想性,例如:寄生抗性,设备的非线性I-V特性等各种非理想性,计算的类似性质提出了重大问题。非理想性可能会对跨键的计算准确性产生有害的影响。过去的作品探索了使用分析技术对非理想性进行建模。但是,几种非理想性具有数据依赖性行为。这不能使用分析(非数据依赖性)模型捕获,从而限制了它们在预测应用程序准确性方面的适用性。 为了解决这个问题,我们提出了一种使用神经网络(Geniex)模仿不平衡性的广义方法,该方法准确地捕获了非理想性的数据依赖性性质。我们对具有不同电压和电导组合的横梁进行广泛的HSPICE模拟。在此之后,我们训练神经网络学习非理想横杆的转移特性。接下来,我们构建一个功能模拟器,其中包括\ textit {tiling}和\ textit {bit-stlicing}等关键架构方面,以分析非理想性对大型神经网络分类精度的影响。我们表明,与HSPICE相比,Geniex的低电压和高电压分别为0.25 $和0.25 $和$ 0.7 $的根平方错误(RMSE)分别达到\ textit {low}均方根错误(RMSE)。此外,Geniex错误是$ 7 \ times $,$ 12.8 \ times $ $ $比只能捕获线性非思想的分析模型好。此外,使用功能模拟器和Geniex,我们证明了分析模型可以高估分类准确性的降解,而ImageNet数据集则与Geniex相比,CIFAR-100上的$ \ ge 10 \%$和$ 3.7 \%\%$ $。

The analog nature of computing in Memristive crossbars poses significant issues due to various non-idealities such as: parasitic resistances, non-linear I-V characteristics of the device etc. The non-idealities can have a detrimental impact on the functionality i.e. computational accuracy of crossbars. Past works have explored modeling the non-idealities using analytical techniques. However, several non-idealities have data dependent behavior. This can not be captured using analytical (non data-dependent) models thereby, limiting their suitability in predicting application accuracy. To address this, we propose a Generalized Approach to Emulating Non-Ideality in Memristive Crossbars using Neural Networks (GENIEx), which accurately captures the data-dependent nature of non-idealities. We perform extensive HSPICE simulations of crossbars with different voltage and conductance combinations. Following that, we train a neural network to learn the transfer characteristics of the non-ideal crossbar. Next, we build a functional simulator which includes key architectural facets such as \textit{tiling}, and \textit{bit-slicing} to analyze the impact of non-idealities on the classification accuracy of large-scale neural networks. We show that GENIEx achieves \textit{low} root mean square errors (RMSE) of $0.25$ and $0.7$ for low and high voltages, respectively, compared to HSPICE. Additionally, the GENIEx errors are $7\times$ and $12.8\times$ better than an analytical model which can only capture the linear non-idealities. Further, using the functional simulator and GENIEx, we demonstrate that an analytical model can overestimate the degradation in classification accuracy by $\ge 10\%$ on CIFAR-100 and $3.7\%$ on ImageNet datasets compared to GENIEx.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源