论文标题

域墙的Atiyah-Patodi-Singer索引定理

Atiyah-Patodi-Singer Index Theorem for Domain Walls

论文作者

Ivanov, A. V., Vassilevich, D. V.

论文摘要

我们将Dirac运算符的索引在紧凑的尺寸歧管上带有域壁。后者被定义为连接跳跃的共同维度一个子手法。我们制定并证明了Atiyah-Patodi-singer定理的类似物,该定理将索引与Pontryagin密度的批量积分和$η$ invariants的批量积分相关联。因此,该指数通过体积的全局性手性异常表达,壁上的奇偶元异常。

We consider the index of a Dirac operator on a compact even dimensional manifold with a domain wall. The latter is defined as a co-dimension one submanifold where the connection jumps. We formulate and prove an analog of the Atiyah-Patodi-Singer theorem that relates the index to the bulk integral of Pontryagin density and $η$-invariants of auxiliary Dirac operators on the domain wall. Thus the index is expressed through the global chiral anomaly in the volume and the parity anomaly on the wall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源