论文标题

人类掌握反应性人工对机器人移交的分类

Human Grasp Classification for Reactive Human-to-Robot Handovers

论文作者

Yang, Wei, Paxton, Chris, Cakmak, Maya, Fox, Dieter

论文摘要

人类和机器人之间的物体转移是协作机器人的关键能力。尽管最近对人类机器人的移交引起了人们的兴趣,但大多数先前的研究都集中在机器人到人类移交方面。此外,在同样关键的人类到机器人移交方面的工作通常认为人类可以将物体放在机器人的抓手中。在本文中,我们提出了一种通过对人类对物体的掌握进行分类,并迅速计划轨迹以根据其意图从人的手中抓住对象的轨迹来提出一种机器人与人类中途相遇的方法。为此,我们收集了一个人类掌握的数据集,该数据集涵盖了用各种手形和姿势固定对象的典型方法,并在此数据集上学习一个深层模型,以将手掌握到其中一个类别之一。我们提出了一种计划和执行方法,该方法根据检测到的抓握和手位置将物体从人的手中夺走,并在中断移交时根据需要进行补充。通过系统的评估,我们证明了我们的系统会导致更加流利的移交与两个基线。我们还从用户研究(n = 9)中介绍了发现,在不同情况下向幼稚用户展示了我们方法的有效性和可用性。可以在http://wyang.me/handovers上找到更多结果和视频。

Transfer of objects between humans and robots is a critical capability for collaborative robots. Although there has been a recent surge of interest in human-robot handovers, most prior research focus on robot-to-human handovers. Further, work on the equally critical human-to-robot handovers often assumes humans can place the object in the robot's gripper. In this paper, we propose an approach for human-to-robot handovers in which the robot meets the human halfway, by classifying the human's grasp of the object and quickly planning a trajectory accordingly to take the object from the human's hand according to their intent. To do this, we collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses, and learn a deep model on this dataset to classify the hand grasps into one of these categories. We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position, and replans as necessary when the handover is interrupted. Through a systematic evaluation, we demonstrate that our system results in more fluent handovers versus two baselines. We also present findings from a user study (N = 9) demonstrating the effectiveness and usability of our approach with naive users in different scenarios. More results and videos can be found at http://wyang.me/handovers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源