论文标题

端到端学习3D点云的本地多视图描述符

End-to-End Learning Local Multi-view Descriptors for 3D Point Clouds

论文作者

Li, Lei, Zhu, Siyu, Fu, Hongbo, Tan, Ping, Tai, Chiew-Lan

论文摘要

在这项工作中,我们提出了一个端到端框架,以了解3D点云的本地多视图描述符。为了采用类似的多视图表示,现有研究使用手工制作的观点在预处理阶段进行渲染,该阶段与随后的描述符学习阶段分离。在我们的框架中,我们通过使用可区分的渲染器将多视图渲染集成到神经网络中,该渲染器允许观点是优化的参数,以捕获更有用的局部兴趣点上下文。为了获得歧视性描述符,我们还设计了一个软视图池模块,以跨视图融合卷积功能。对现有3D注册基准的广泛实验表明,我们的方法在定量和质量上都优于现有的本地描述符。

In this work, we propose an end-to-end framework to learn local multi-view descriptors for 3D point clouds. To adopt a similar multi-view representation, existing studies use hand-crafted viewpoints for rendering in a preprocessing stage, which is detached from the subsequent descriptor learning stage. In our framework, we integrate the multi-view rendering into neural networks by using a differentiable renderer, which allows the viewpoints to be optimizable parameters for capturing more informative local context of interest points. To obtain discriminative descriptors, we also design a soft-view pooling module to attentively fuse convolutional features across views. Extensive experiments on existing 3D registration benchmarks show that our method outperforms existing local descriptors both quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源