论文标题
Chevalley的班级公式,单位方程式和渐近Fermat的最后定理
Chevalley's class number formula, unit equations and the asymptotic Fermat's Last Theorem
论文作者
论文摘要
令$ f $为一个数字字段,$ \ Mathcal {o} _f $它的整数环。我们使用Chevalley的模棱两可的班级公式为单位方程不存在的解决方案提供标准,$λ+μ= 1 $,$λ,μ\ in \ Mathcal {o} _f^\ times $。然后,这用于加强由于弗里塔斯和锡克塞克而导致的渐近费玛特的最后定理的标准。
Let $F$ be a number field and $\mathcal{O}_F$ its ring of integers. We use Chevalley's ambiguous class number formula to give a criterion for the non-existence of solutions to the unit equation $λ+ μ= 1$, $λ, μ\in \mathcal{O}_F^\times$. This is then used to strengthen a criterion for the asymptotic Fermat's Last Theorem due to Freitas and Siksek.