论文标题
冠状病毒(Covid-19)的快速AI开发周期大流行:使用深度学习CT图像分析的自动检测和患者监测的初步结果
Rapid AI Development Cycle for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning CT Image Analysis
论文作者
论文摘要
目的:开发基于AI的自动化CT图像分析工具,用于冠状病毒的检测,定量和跟踪;证明他们可以将冠状病毒患者与非患者区分开。材料和方法:包括来自中国疾病感染地区在内的多个国际数据集。我们提出了一个使用强大的2D和3D深度学习模型,修改和调整现有AI模型并将其与临床理解相结合的系统。我们进行了多次回顾性实验,以分析系统的性能在检测可疑的COVID-19胸CT特征,并使用3D体积审查来评估每位患者疾病的演变,从而产生Corona评分。该研究包括157名国际患者(中国和美国)的测试组。结果:根据胸CT研究,冠状病毒与非核可纳病毒病例的分类结果为0.996 AUC(95%CI:0.989-1.00);在中国控制和感染患者的数据集上。可能的工作点:98.2%的灵敏度,92.2%的特异性。为了对冠状病毒患者进行时间分析,该系统输出可以实现定量测量值(体积,直径)和在基于切片的热图或3D体积显示器中较大不相位的可视化。我们建议的电晕评分随着时间的推移衡量疾病的进展。结论:这项目前正在扩展到较大人群的最初研究表明,迅速开发的基于AI的图像分析可以在检测冠状病毒以及量化和跟踪疾病负担方面具有很高的准确性。
Purpose: Develop AI-based automated CT image analysis tools for detection, quantification, and tracking of Coronavirus; demonstrate they can differentiate coronavirus patients from non-patients. Materials and Methods: Multiple international datasets, including from Chinese disease-infected areas were included. We present a system that utilizes robust 2D and 3D deep learning models, modifying and adapting existing AI models and combining them with clinical understanding. We conducted multiple retrospective experiments to analyze the performance of the system in the detection of suspected COVID-19 thoracic CT features and to evaluate evolution of the disease in each patient over time using a 3D volume review, generating a Corona score. The study includes a testing set of 157 international patients (China and U.S). Results: Classification results for Coronavirus vs Non-coronavirus cases per thoracic CT studies were 0.996 AUC (95%CI: 0.989-1.00) ; on datasets of Chinese control and infected patients. Possible working point: 98.2% sensitivity, 92.2% specificity. For time analysis of Coronavirus patients, the system output enables quantitative measurements for smaller opacities (volume, diameter) and visualization of the larger opacities in a slice-based heat map or a 3D volume display. Our suggested Corona score measures the progression of disease over time. Conclusion: This initial study, which is currently being expanded to a larger population, demonstrated that rapidly developed AI-based image analysis can achieve high accuracy in detection of Coronavirus as well as quantification and tracking of disease burden.