论文标题
在均质和各向同性时空中半连续的普通微分方程的Cauchy问题
The Cauchy problem for a semilinear ordinary differential equation in the homogeneous and isotropic spacetime
论文作者
论文摘要
半连贯的差分方程是从Ehrenfest定理的均质和各向同性时空中的半线性schrödinger方程得出的。考虑了方程式的库奇问题。在Sitter的时空中,还考虑了方程式全球弱解的确切解决方案和不存在的解决方案。研究了空间扩张和收缩的影响。
A semilinear ordinary differential equation is derived from a semilinear Schrödinger equation in the homogeneous and isotropic spacetime by the Ehrenfest theorem. The Cauchy problem for the equation is considered. Exact solutions and nonexistence of global weak solutions of the equation are also considered in the de Sitter spacetime. The effects of spatial expansion and contraction are studied.