论文标题

通过QUBO和数字退火进行图形聚类

Graph Clustering Via QUBO and Digital Annealing

论文作者

Miasnikof, Pierre, Hong, Seo, Lawryshyn, Yuri

论文摘要

本文凭经验研究了使用新颖的专用计算机硬件来解决已知的硬问题,图形聚类的计算成本。我们将图表聚类问题表示为群集内距离或异异性最小化问题。我们将台词作为二次无约束的二进制优化问题提出,并采用新颖的计算机架构来获得数值解决方案。我们的起点是文献的聚类表述。然后将此公式转换为二次无约束的二进制优化公式。最后,我们使用新颖的专用计算机架构来获取数值解决方案。为了进行基准测试,我们还将计算性能与使用常规硬件运行的商业求解器Gurobi获得的计算性能进行比较。我们的初始结果表明,专用的硬件为商业求解器提供了等效的解决方案,但在所需的时间很小的一小部分。

This article empirically examines the computational cost of solving a known hard problem, graph clustering, using novel purpose-built computer hardware. We express the graph clustering problem as an intra-cluster distance or dissimilarity minimization problem. We formulate our poblem as a quadratic unconstrained binary optimization problem and employ a novel computer architecture to obtain a numerical solution. Our starting point is a clustering formulation from the literature. This formulation is then converted to a quadratic unconstrained binary optimization formulation. Finally, we use a novel purpose-built computer architecture to obtain numerical solutions. For benchmarking purposes, we also compare computational performances to those obtained using a commercial solver, Gurobi, running on conventional hardware. Our initial results indicate the purpose-built hardware provides equivalent solutions to the commercial solver, but in a very small fraction of the time required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源