论文标题
用于多演奏家软机器人局部反馈控制的无电子气动逻辑电路
Electronics-Free Pneumatic Logic Circuits for Localized Feedback Control of Multi-Actuator Soft Robots
论文作者
论文摘要
只有在自主操作所需的控制器才能在软组件上完全实现时,才能实现创建能够执行复杂任务的完全软机器人的愿景。尽管在机械信号处理方面取得了符合性的流体电路的最新进展,但该技术在软机器人控制中的适用性受到复杂的制造和调整过程的限制,还需要对时钟和数字参考等外部信号的需求。我们提出了一种开发气动软机器人的方法,其中使用在系统的软结构中分布在分布在组件的组件上实现的控制器进行多个执行器之间的协调相互作用。在这种方法中,引入了二进制和多值执行逻辑状态的概念。通过这种方式,可以将使用新型的软阀建立的执行器类似物状态之间的物理局部动力耦合可以被视为基于逻辑栅极的映射,该映射作用于执行执行器状态的离散表示形式。因此,可以应用数字逻辑设计的技术来得出局部机械耦合的体系结构,以智能协调执行器响应的振荡模式。为了进行控制器调整,构思了软阀,以便可以通过相应的结构元素的简单几何变化从机器人的外部调整其主要物理参数。为了证明所提出的方法,我们介绍了六态机车的软机器人的发展。
The vision of creating entirely-soft robots capable of performing complex tasks will be accomplished only when the controllers required for autonomous operation can be fully implemented on soft components. Despite recent advances in compliant fluidic circuitry for mechanical signal processing, the applicability of this technology for soft robot control has been limited by complicated fabrication and tuning processes, and also the need for external signals such as clocks and digital references. We propose a method to develop pneumatic soft robots in which coordinated interactions between multiple actuators are performed using controllers implemented on components distributedly embedded in the soft structures of the system. In this approach, the notions of binary and multi-valued actuator logic states are introduced. In this way, the physical local dynamical couplings between the analog states of the actuators, established using soft valves of a new type, can be thought of as logic-gate-based mappings acting on discretized representations of the actuator states. Consequently, techniques for digital logic design can be applied to derive the architectures of the localized mechanical couplings that intelligently coordinate the oscillation patterns of the actuator responses. For the purposes of controller tuning, the soft valves are conceived so that their main physical parameters can be adjusted from the exterior of the robot through simple geometrical changes of the corresponding structural elements. To demonstrate the proposed approach, we present the development of a six-state locomoting soft robot.