论文标题
使用Morava K理论通勤无限的同置限制
Commuting unbounded homotopy limits with Morava K-theory
论文作者
论文摘要
本文为Morava $ k $ - 具有某些同型限制的通勤提供了条件。这些条件通过允许在下面不统一的光谱序列的同质序列限制来扩展此问题。作为应用程序,我们证明了$ k(n)$ - 代数$ k $的本地琐事(对于足够大的$ n $) - 代数的理论 - 截短的棕色 - 彼得森 - 彼得森 - 基于bruner-rognes的作品,并在$ k(n)$ k(n)$ k(n)$ k(n)的经典定理上进行了k(n)tregial tregial of Alge of Alegraic of Algerbraic of Alge, $ n $。
This paper provides conditions for Morava $K$-theory to commute with certain homotopy limits. These conditions extend previous work on this question by allowing for homotopy limits of sequences of spectra that are not uniformly bounded below. As an application, we prove the $K(n)$-local triviality (for sufficiently large $n$) of the algebraic $K$-theory of algebras over truncated Brown--Peterson spectra, building on work of Bruner--Rognes and extending a classical theorem of Mitchell on $K(n)$-local triviality of the algebraic K-theory spectrum of the integers for large enough $n$.