论文标题

使用残留的神经网络自动检测用过的核燃燃料干燥储存罐中腐蚀的自动检测

Automated detection of corrosion in used nuclear fuel dry storage canisters using residual neural networks

论文作者

Papamarkou, Theodore, Guy, Hayley, Kroencke, Bryce, Miller, Jordan, Robinette, Preston, Schultz, Daniel, Hinkle, Jacob, Pullum, Laura, Schuman, Catherine, Renshaw, Jeremy, Chatzidakis, Stylianos

论文摘要

非破坏性评估方法在确保许多行业的组成完整性和安全性方面起着重要作用。操作员疲劳可以在此类方法的可靠性中发挥关键作用。这对于检查高价值的资产或资产很重要,其影响很高,例如航空航天和核部件。卷积神经网络的最新进展可以支持和自动化这些检查工作。本文建议在干燥的不锈钢罐外壳中使用残留的神经网络(RESNET)进行腐蚀的实时检测,包括氧化铁变色,点缀和应力腐蚀破裂。所提出的方法将核罐图像分成较小的瓷砖,在这些瓷砖上训练一个重新连接,并使用被重新NET腐蚀的瓷砖计数将图像分类为腐蚀或完整的图像。结果表明,这种深度学习方法可以通过较小的图块检测腐蚀的轨迹,同时又可以高精度地推断出是否来自腐蚀罐。因此,拟议的方法有望自动化和加快核燃料罐检查,以最大程度地减少检查成本,并部分替换人类指导的现场检查,从而减少对人员的辐射剂量。

Nondestructive evaluation methods play an important role in ensuring component integrity and safety in many industries. Operator fatigue can play a critical role in the reliability of such methods. This is important for inspecting high value assets or assets with a high consequence of failure, such as aerospace and nuclear components. Recent advances in convolution neural networks can support and automate these inspection efforts. This paper proposes using residual neural networks (ResNets) for real-time detection of corrosion, including iron oxide discoloration, pitting and stress corrosion cracking, in dry storage stainless steel canisters housing used nuclear fuel. The proposed approach crops nuclear canister images into smaller tiles, trains a ResNet on these tiles, and classifies images as corroded or intact using the per-image count of tiles predicted as corroded by the ResNet. The results demonstrate that such a deep learning approach allows to detect the locus of corrosion via smaller tiles, and at the same time to infer with high accuracy whether an image comes from a corroded canister. Thereby, the proposed approach holds promise to automate and speed up nuclear fuel canister inspections, to minimize inspection costs, and to partially replace human-conducted onsite inspections, thus reducing radiation doses to personnel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源