论文标题

通过多模式环境理解多样化和可允许的轨迹预测

Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding

论文作者

Park, Seong Hyeon, Lee, Gyubok, Bhat, Manoj, Seo, Jimin, Kang, Minseok, Francis, Jonathan, Jadhav, Ashwin R., Liang, Paul Pu, Morency, Louis-Philippe

论文摘要

自主驾驶中的多代理轨迹预测需要代理商准确地预测周围车辆和行人的行为,以实现安全可靠的决策。由于这些动态场景中的部分可观察性,直接在未来的代理轨迹上获得后验分布仍然是一个具有挑战性的问题。在现实的具体体现环境中,每个代理商的未来轨迹都应该是多种多样的,因为可以使用多个合理的动作序列来实现其预期的目标,并且可以接受,因为它们必须遵守身体的约束并留在可驱动的领域。在本文中,我们提出了一个模型,该模型综合了来自多模式世界的多个输入信号|环境的场景上下文以及多个周围代理之间的相互作用|最佳模型,以模型所有多样化和可允许的轨迹。我们将模型与两个公共数据集的强大基线和消融进行了比较,并比以前的最新方法显示出显着的性能改善。最后,我们提供了新的指标,这些指标纳入了可接受性标准,以进一步研究和评估预测的多样性。代码为:https://github.com/kami93/cmu-datf。

Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians, for safe and reliable decision-making. Due to partial observability in these dynamical scenes, directly obtaining the posterior distribution over future agent trajectories remains a challenging problem. In realistic embodied environments, each agent's future trajectories should be both diverse since multiple plausible sequences of actions can be used to reach its intended goals, and admissible since they must obey physical constraints and stay in drivable areas. In this paper, we propose a model that synthesizes multiple input signals from the multimodal world|the environment's scene context and interactions between multiple surrounding agents|to best model all diverse and admissible trajectories. We compare our model with strong baselines and ablations across two public datasets and show a significant performance improvement over previous state-of-the-art methods. Lastly, we offer new metrics incorporating admissibility criteria to further study and evaluate the diversity of predictions. Codes are at: https://github.com/kami93/CMU-DATF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源