论文标题

在inas纳米线中,上限与电场控制的Rashba旋转分裂的出现

Emergence of an upper bound to the electric field controlled Rashba spin splitting in InAs nanowires

论文作者

Luo, Jun-Wei, Li, Shu-Shen, Zunger, Alex

论文摘要

RASHBA自旋轨道耦合的强度($α_R$)的实验评估是间接的,涉及对磁通转移的自旋松弛长度的测量,以及弱抗静脉化模型。然而,对纳米线中的自旋松弛长度的分析掩盖了对$α_R$的实验评估,并导致了普遍的信念,即可以用电场自由地调整了旋转的租户。在这里,我们报告了$α_R$的直接理论,从而在应用电场时对INAS纳米线的自旋带结构进行原子计算 - 一种直接的方法,不需要自旋松弛理论。令人惊讶的是,我们发现{\ it上限}到电场可调rashba旋转分裂和随后的$α_r$;对于INAS纳米线,无论应用野外强度如何,$α_r$被固定在约170mevå。我们发现,这种固定是由于量子限制的Stark效应所致,该效应可连续减少使用电场的纳米线带隙,最终导致带隙闭合,并大大增加了自由载体的密度。这导致了强烈的筛选,从而防止了纳米线内部的施加电场,而INAS纳米线的增加了约200 kV/cm。因此,门电压进一步增加不会增加$α_r$。这一发现阐明了纳米诺瓦拉·拉什巴·SOC(Nanowire Rashba Soc)的身体趋势以及纳米尺寸和电场所扮演的角色。

The experimental assessment of the strength ($α_R$) of the Rashba spin-orbit coupling is rather indirect and involves the measurement of the spin relaxation length from magnetotransport, together with a model of weak antilocalization. The analysis of the spin relaxation length in nanowires, however, clouds the experimental assessment of the $α_R$ and leads to the prevailing belief that it can be tuned freely with electric field--a central tenant of spintronics. Here, we report direct theory of $α_R$ leading to atomistic calculations of the spin band structure of InAs nanowires upon application of electric field-- a direct method that does not require a theory of spin relaxation. Surprisingly, we find an {\it upper bound} to the electric field tunable Rashba spin splitting and the ensuing $α_R$; for InAs nanowires, $α_R$ is pinned at about 170 meVÅ irrespective of the applied field strength. We find that this pinning is due to the quantum confined stark effect, that reduces continuously the nanowire band gap with applied electric field, leading eventually to band gap closure and a considerable increase in the density of free carriers. This results in turn in a strong screening that prevents the applied electric field inside the nanowire from increasing further beyond around 200 kV/cm for InAs nanowires. Therefore, further increase in the gate voltage will not increase $α_R$. This finding clarifies the physical trends to be expected in nanowire Rashba SOC and the roles played by the nano size and electric field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源