论文标题

通过修改的多重量运动学近似,在高能分解中NLO校正的稳定性

Towards stability of NLO corrections in High-Energy Factorization via Modified Multi-Regge Kinematics approximation

论文作者

Nefedov, Maxim

论文摘要

在高能分解的框架内开发了近代级别阶顺序(NLO)计算多尺度硬化的跨层计算方案(NLO)。未集成的PDF的演化方程,它可以在领先的对数近似值中恢复对系数功能的$ \ log 1/z $ - 校正,以及一定的近代对数和近代领导的对数和近代领导的功率更正的一定子集,是形式主义的效率稳定性所必需的,是形式主义的稳定性,近似soligated and of soligated and dym in the dymarply。由操作员$ {\ rm tr} \ left [g_ {μν} g^{μν} \ right] $引起的示例,该过程对已经在lo中的gluon pdf敏感。中度($ o(20 \%)$)NLO对包含结构功能的校正以小$ x_b <10^{ - 4} $找到,而对于$ p_t $ -spectrum在考虑过程中的领先喷气式飞机的$ p_t $ -spectrum,nlo校正是小的($ <o(20 \%)$),$ k_t $ -ffactorization是一个很好的近似值。该方法可以直接扩展到高能$ pp $ collisisions的多尺度硬过程的情况。

The perturbatively-stable scheme of Next-to-Leading order (NLO) calculations of cross-sections for multi-scale hard-processes in DIS-like kinematics is developed in the framework of High-Energy Factorization. The evolution equation for unintegrated PDF, which resums $\log 1/z$-corrections to the coefficient function in the Leading Logarithmic approximation together with a certain subset of Next-to-Leading Logarithmic and Next-to-Leading Power corrections, necessary for the perturbative stability of the formalism, is formulated and solved in the Doubly-Logarithmic approximation. An example of DIS-like process, induced by the operator ${\rm tr}\left[G_{μν}G^{μν}\right]$, which is sensitive to gluon PDF already in the LO, is studied. Moderate ($O(20\%)$) NLO corrections to the inclusive structure function are found at small $x_B<10^{-4}$, while for the $p_T$-spectrum of a leading jet in the considered process, NLO corrections are small ($<O(20\%)$) and LO of $k_T$-factorization is a good approximation. The approach can be straightforwardly extended to the case of multi-scale hard processes in $pp$-collisions at high energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源