论文标题
融合系统的算法,其应用到$ p $ - 小订单的算法
Algorithms for fusion systems with applications to $p$-groups of small order
论文作者
论文摘要
对于Prime $ p $,我们描述了用于按计算机上的$ P $组上处理特定类型的融合系统的协议。这些融合系统包含所有饱和融合系统。该框架使我们能够在融合系统中计算确定两个亚组是否是偶联的。我们描述了$ p $ - 组每个子组的自动化器的生成过程。这允许对饱和度进行计算检查。这些程序已使用岩浆实施。我们描述了一个程序,以搜索$ p $ - groups上的$ \ MATHCAL {f} $,带有$ o_p(\ Mathcal {f})= 1 $和$ o^p(\ Mathcal {f})= \ Mathcal {f} $。采用这些计算方法,我们确定$(p,n)\ in \ in \ {(3,4),(3,5),(3,6),(3,7),(3,7),(5,4),(5,5),(5,6),(5,6),(7,4),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5),(7,5)((7,5)\} $),使用这些计算方法确定所有此类融合系统。这给出了哪些小组可以支持小$ p $ - 奇数订单上的饱和融合系统的第一个完整图片。
For a prime $p$, we describe a protocol for handling a specific type of fusion system on a $p$-group by computer. These fusion systems contain all saturated fusion systems. This framework allows us to computationally determine whether or not two subgroups are conjugate in the fusion system for example. We describe a generation procedure for automizers of every subgroup of the $p$-group. This allows a computational check of saturation. These procedures have been implemented using MAGMA. We describe a program to search for saturated fusion systems $\mathcal{F}$ on $p$-groups with $O_p(\mathcal{F})=1$ and $O^p(\mathcal{F})=\mathcal{F}$. Employing these computational methods we determine all such fusion system on groups of order $p^n$ where $(p,n) \in \{(3,4),(3,5),(3,6),(3,7),(5,4),(5,5),(5,6),(7,4),(7,5)\}$. This gives the first complete picture of which groups can support saturated fusion systems on small $p$-groups of odd order.