论文标题

分析随机平滑防御的准确性损失

Analyzing Accuracy Loss in Randomized Smoothing Defenses

论文作者

Gao, Yue, Rosenberg, Harrison, Fawaz, Kassem, Jha, Somesh, Hsu, Justin

论文摘要

机器学习(ML)算法的最新进展,尤其是深神经网络(DNNS),在包括面部和语音识别在内的几项任务上表现出了显着的成功(有时超过人类水平的表现)。但是,ML算法很容易受到\ emph {对抗攻击}的影响,例如测试时间,训练时间和后门攻击。在测试时间攻击中,对手工艺的对抗示例,这些示例是人类无法察觉到的专门制作的扰动,当添加到输入示例中时,迫使机器学习模型错误地分类给定的输入示例。在关键上下文(例如信息安全性和自主驾驶)中部署ML算法时,对抗性示例是一个关注的问题。研究人员已经做出了大量的防御能力。一个有希望的防御是\ emph {随机平滑},其中分类器的预测通过在我们希望分类的输入示例中添加随机噪声来平滑。在本文中,我们从理论和经验上探索随机平滑。我们研究了随机平滑对可行假设空间的影响,并表明,对于某些噪声水平,由于平滑而导致可行的收缩假设集,这给出了一个理由,这给出了一个原因,为什么自然准确性在平滑后会下降。为了执行我们的分析,我们引入了一个模型,用于随机平滑,该模型抽象了细节,例如噪声的确切分布。我们通过广泛的实验来补充理论结果。

Recent advances in machine learning (ML) algorithms, especially deep neural networks (DNNs), have demonstrated remarkable success (sometimes exceeding human-level performance) on several tasks, including face and speech recognition. However, ML algorithms are vulnerable to \emph{adversarial attacks}, such test-time, training-time, and backdoor attacks. In test-time attacks an adversary crafts adversarial examples, which are specially crafted perturbations imperceptible to humans which, when added to an input example, force a machine learning model to misclassify the given input example. Adversarial examples are a concern when deploying ML algorithms in critical contexts, such as information security and autonomous driving. Researchers have responded with a plethora of defenses. One promising defense is \emph{randomized smoothing} in which a classifier's prediction is smoothed by adding random noise to the input example we wish to classify. In this paper, we theoretically and empirically explore randomized smoothing. We investigate the effect of randomized smoothing on the feasible hypotheses space, and show that for some noise levels the set of hypotheses which are feasible shrinks due to smoothing, giving one reason why the natural accuracy drops after smoothing. To perform our analysis, we introduce a model for randomized smoothing which abstracts away specifics, such as the exact distribution of the noise. We complement our theoretical results with extensive experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源