论文标题
Kähler将Kähler-ricci solitons浸入明确或不确定的复杂空间形式中
Kähler immersions of Kähler-Ricci solitons into definite or indefinite complex space forms
论文作者
论文摘要
令$(g,x)$是复杂的歧管$ m $上的kähler-ricci soliton。我们证明,如果Kähler歧管$(m,g)$可以被kähler浸入恒定的全态分段曲率$ 2C $的确定或无限期的复杂空间形式,那么$ g $就是爱因斯坦。此外,它的爱因斯坦常数是$ c $的合理倍数。
Let $(g, X)$ be a Kähler-Ricci soliton on a complex manifold $M$. We prove that if the Kähler manifold $(M, g)$ can be Kähler immersed into a definite or indefinite complex space form of constant holomorphic sectional curvature $2c$, then $g$ is Einstein. Moreover, its Einstein constant is a rational multiple of $c$.