论文标题
上赫森伯格波西米亚矩阵的最大绝对决定因素
Maximum Absolute Determinants of Upper Hessenberg Bohemian Matrices
论文作者
论文摘要
如果将其条目从有限的整数集采样,则称为Bohemian。我们确定上赫森伯格波西米亚矩阵的最大绝对决定因素,该矩阵固定为$ 1 $,并从$ \ {0,1,1,\ cdots,n \} $采样上,将先前的结果扩展到$ n = 1 $ n = 1 $ n = 2 $ and porz porz和fasi和fasi&negi&negi&negi&negi&negi&negi&negi&negi&negi&negio fors []此外,我们将问题概括为非直集值条目。
A matrix is called Bohemian if its entries are sampled from a finite set of integers. We determine the maximum absolute determinant of upper Hessenberg Bohemian Matrices for which the subdiagonal entries are fixed to be $1$ and upper triangular entries are sampled from $\{0,1,\cdots,n\}$, extending previous results for $n=1$ and $n=2$ and proving a recent conjecture of Fasi & Negri Porzio [8]. Furthermore, we generalize the problem to non-integer-valued entries.