论文标题

分区代数的编织量子门

Braiding quantum gates from partition algebras

论文作者

Padmanabhan, Pramod, Sugino, Fumihiko, Trancanelli, Diego

论文摘要

单一编织操作员可以用作强大的纠缠量子门。我们引入了一种解决方案生成技术,以解决$(d,m,l)$广义的Yang-baxter方程,以$ M/2 \ leq l \ leq m $,该方程允许系统地构建此类编织操作员。这是通过使用分区代数来实现的。我们获得了产生完整辫子集团的单一和非自动编织操作员的家庭。给出了针对2、3和4 Qubit系统的明确示例,包括根据随机局部操作和经典通信产生的这些操作员生成的纠缠状态的分类。

Unitary braiding operators can be used as robust entangling quantum gates. We introduce a solution-generating technique to solve the $(d,m,l)$-generalized Yang-Baxter equation, for $m/2\leq l \leq m$, which allows to systematically construct such braiding operators. This is achieved by using partition algebras, a generalization of the Temperley-Lieb algebra encountered in statistical mechanics. We obtain families of unitary and non-unitary braiding operators that generate the full braid group. Explicit examples are given for a 2-, 3-, and 4-qubit system, including the classification of the entangled states generated by these operators based on Stochastic Local Operations and Classical Communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源