论文标题
同时测试均值:在单向方差分析中f ftest的一种无盲方法
Simultaneous test for Means: An Unblind Way to the F-test in One-way Analysis of Variance
论文作者
论文摘要
在拒绝方差分析中的零假设之后,下一步是对成对比较进行比较以找出均值的差异。本文的目的是三倍。最重要的目的是建议计算决策限制的表达,使我们能够在一个步骤中收集测试和成对比较。该表达被认为是每种处理和所有处理的正方形之比之间的平方之比。第二个目的是获得零假设下提议比率的确切采样分布。确切的采样分布得出作为第二种类型的β分布。第三个目的是使用beta分布和调整后的P值来创建决策限制。因此,如果任何调整点下降,则拒绝平等方式的无效假设。进行仿真研究以计算一型误差。结果表明,所提出的方法使用Benjamini-Hochberg调整后的P值控制了名义值接近名称值的一型误差。给出了两种申请,以显示提出的方法的好处。
After rejecting the null hypothesis in the analysis of variance, the next step is to make the pairwise comparisons to find out differences in means. The purpose of this paper is threefold. The foremost aim is to suggest expression for calculating decision limit that enables us to collect the test and pairwise comparisons in one step. This expression is proposed as the ratio of between square for each treatment and within sum of squares for all treatments. The second aim is to obtain the exact sampling distribution of the proposed ratio under the null hypothesis. The exact sampling distribution is derived as the beta distribution of the second type. The third aim is to use beta distribution and adjusted p values to create decision limit. Therefore, reject the null hypothesis of equal means if any adjusted point falls outsides the decision limit. Simulation study is conducted to compute Type one error. The results show that the proposed method controls the type one error near nominal values using Benjamini-Hochberg adjusted p-values. Two applications are given to show the benefits of the proposed method.