论文标题

使用音频生物标志物鉴定痴呆症

Identification of Dementia Using Audio Biomarkers

论文作者

Chakraborty, Rupayan, Pandharipande, Meghna, Bhat, Chitralekha, Kopparapu, Sunil Kumar

论文摘要

痴呆症是一种综合征,通常具有慢性性质,其特征是认知功能的恶化,尤其是在老年人群中,并且足够严重以影响其日常活动。早期诊断痴呆症对于提供及时治疗以减轻痴呆症的进展至关重要。众所周知,言语可以表明一个人的认知状态。这项工作的目的是使用语音处理和机器学习技术自动识别痴呆症的阶段,例如轻度认知障碍(MCI)或阿尔茨海默氏病(AD)。非语言的声学参数用于此目的,使此语言无关。我们分析了从dementiabank数据库的Pitt语料库进行的临床医生参与对话的患者摘录,以确定最能区分MCI,AD和Healthy(HC)语音的语音参数。我们分析了各种声音特征的贡献,例如光谱,时间,cepstral,其特征水平融合以及选择对痴呆阶段的识别。此外,我们比较使用特征级融合和得分级融合的性能。使用得分级融合,精度达到82%,比功能级融合的绝对提高5%。

Dementia is a syndrome, generally of a chronic nature characterized by a deterioration in cognitive function, especially in the geriatric population and is severe enough to impact their daily activities. Early diagnosis of dementia is essential to provide timely treatment to alleviate the effects and sometimes to slow the progression of dementia. Speech has been known to provide an indication of a person's cognitive state. The objective of this work is to use speech processing and machine learning techniques to automatically identify the stage of dementia such as mild cognitive impairment (MCI) or Alzheimers disease (AD). Non-linguistic acoustic parameters are used for this purpose, making this a language independent approach. We analyze the patients audio excerpts from a clinician-participant conversations taken from the Pitt corpus of DementiaBank database, to identify the speech parameters that best distinguish between MCI, AD and healthy (HC) speech. We analyze the contribution of various types of acoustic features such as spectral, temporal, cepstral their feature-level fusion and selection towards the identification of dementia stage. Additionally, we compare the performance of using feature-level fusion and score-level fusion. An accuracy of 82% is achieved using score-level fusion with an absolute improvement of 5% over feature-level fusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源