论文标题

Miquel-Steiner的点基因座

Miquel-Steiner's point locus

论文作者

Zakharyan, Yuriy

论文摘要

在本文中,我们重新制定了Miquel-Steiner的定理,并获得了Miquel-Steiner's Point locus for任意三角形的位置。我们证明了这个基因座与共轭圈子和Brocard的圆圈有关。此外,在Cevians彼此垂直的情况下,在Cevian形成类似的三角形的情况下,我们获得了Miquel-Steiner的点基因座。此外,我们证明,如果Miquel-Steiner的点属于线,那么Cevinans的相交点属于与异内族平行的线。最后,对于Miquel-Steiner的点与三角形中心一致的情况,我们几乎没有得到结果。

In this paper we reformulate Miquel-Steiner's theorem and we obtain Miquel-Steiner's point locus for an arbitrary triangle. We prove that this locus is related to conjugate circles and Brocard's circle. In addition, we obtain Miquel-Steiner's point locus in a case when cevians are perpendicular to each other, in a case when cevians form similar triangles. In addition, we prove that if Miquel-Steiner's point belongs to line, then cevinans intersection point belongs to line which is parallel to isogonal. Finally, we obtain few result for cases when Miquel-Steiner's point coincides with triangle centres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源