论文标题

几何量化中的光谱收敛---曲曲面符号歧管的情况

Spectral convergence in geometric quantization --- the case of toric symplectic manifolds

论文作者

Hattori, Kota, Yamashita, Mayuko

论文摘要

在本文中,我们显示了$ \ Overline {\ partial} $ - laplacians的光谱收敛结果,当$(x,ω)$是一个紧凑型的复曲面象征性歧管时,配备了天然的前量子量束$ l $。我们考虑一个$ \ {J_S \} _ s $ $ω$ - 稳态的复杂结构,趋向于大型复杂结构限制,并获得$ \ overline {\ partial} $的光谱收敛 - laplacians-laplacians-laplacians作用于$ l^k $。

In this paper, we show the spectral convergence result of $\overline{\partial}$-Laplacians when $(X,ω)$ is a compact toric symplectic manifold equipped with the natural prequantum line bundle $L$. We consider a family $\{ J_s\}_s$ of $ω$-compatible complex structures tending to the large complex structure limit, and obtain the spectral convergence of $\overline{\partial}$-Laplacians acting on $L^k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源