论文标题
协作过滤和排名的进步
Advances in Collaborative Filtering and Ranking
论文作者
论文摘要
在本文中,我们涵盖了协作过滤和排名的最新进展。在第1章中,我们简要介绍了协作过滤和排名的历史和当前的景观;第2章我们首先讨论了与图形信息的点协作过滤问题,以及我们提出的新方法如何编码非常深的图表信息,该信息有助于四个现有的图形协作滤波算法;第3章是关于协作排名的成对方法,以及我们如何将算法加快到近乎线性的时间复杂性。第4章是在合作排名的新列表方面的方法,以及列表的方法如何更好地选择明确和成对损失的显式和隐式反馈;第5章是关于我们提出的用于嵌入层的新的正则化技术随机共享嵌入(SSE),以及理论上如何在跨建议和自然语言处理的6个不同任务上有效地有效地声音和经验上有效。第6章是我们在SSE的帮助下为最先进的顺序推荐模型介绍个性化的方式,SSE在防止我们的个性化模型过度适应培训数据方面起着重要作用;第7章,我们总结了到目前为止取得的成就,并预测了未来的方向。第8章是所有章节的附录。
In this dissertation, we cover some recent advances in collaborative filtering and ranking. In chapter 1, we give a brief introduction of the history and the current landscape of collaborative filtering and ranking; chapter 2 we first talk about pointwise collaborative filtering problem with graph information, and how our proposed new method can encode very deep graph information which helps four existing graph collaborative filtering algorithms; chapter 3 is on the pairwise approach for collaborative ranking and how we speed up the algorithm to near-linear time complexity; chapter 4 is on the new listwise approach for collaborative ranking and how the listwise approach is a better choice of loss for both explicit and implicit feedback over pointwise and pairwise loss; chapter 5 is about the new regularization technique Stochastic Shared Embeddings (SSE) we proposed for embedding layers and how it is both theoretically sound and empirically effectively for 6 different tasks across recommendation and natural language processing; chapter 6 is how we introduce personalization for the state-of-the-art sequential recommendation model with the help of SSE, which plays an important role in preventing our personalized model from overfitting to the training data; chapter 7, we summarize what we have achieved so far and predict what the future directions can be; chapter 8 is the appendix to all the chapters.