论文标题
整数的线性复发序列的有效公式
Effective formulas for linear recurrence sequences of integers
论文作者
论文摘要
我们提出了一个有效公式的新定义,以解决列举组合学问题的问题。我们概述了一个事实证明,整数的每个线性复发序列都具有这样的公式。它是从可以从Skolem-Mahler-Lech定理和子空间定理推导的下限的。我们将在此扩展摘要的完整版本中提供有关Corvaja造成的这种推论的详细信息。
We propose a new definition of effective formulas for problems in enumerative combinatorics. We outline the proof of the fact that every linear recurrence sequence of integers has such a formula. It follows from a lower bound that can be deduced from the Skolem-Mahler-Lech theorem and the Subspace Theorem. We will give details of this deduction that is due to P. Corvaja in the full version of this extended abstract.