论文标题

使用部分注释的数据集的卷积神经网络中的卷积神经网络的弱监督

Weak Supervision in Convolutional Neural Network for Semantic Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset

论文作者

Suzuki, Yuki, Yamagata, Kazuki, Masahiro, Yanagawa, Kido, Shoji, Tomiyama, Noriyuki

论文摘要

对于肺部疾病的客观评估,需要进行弥漫性肺部疾病(DLDS)的计算机辅助诊断系统。在本文中,我们开发了5种DLDS的语义分割模型。在这项工作中考虑的DLD是巩固,地面玻璃不透明度,蜂巢,肺气肿和正常。卷积神经网络(CNN)是机器学习算法中语义分割的最有希望的技术之一。在为语义细分创建带注释的数据集时,既费力又耗时,但会为每个图像提供部分注释的数据集,其中仅对每个图像进行注释,因为注释器在注释任务期间只需要在一个类中专注于一个类,因此更容易。在本文中,我们提出了一种新的弱监督技术,该技术有效地利用了部分注释的数据集。使用部分注释的数据集组成372 CT图像的实验表明,我们提出的技术显着提高了分割精度。

Computer-aided diagnosis system for diffuse lung diseases (DLDs) is necessary for the objective assessment of the lung diseases. In this paper, we develop semantic segmentation model for 5 kinds of DLDs. DLDs considered in this work are consolidation, ground glass opacity, honeycombing, emphysema, and normal. Convolutional neural network (CNN) is one of the most promising technique for semantic segmentation among machine learning algorithms. While creating annotated dataset for semantic segmentation is laborious and time consuming, creating partially annotated dataset, in which only one chosen class is annotated for each image, is easier since annotators only need to focus on one class at a time during the annotation task. In this paper, we propose a new weak supervision technique that effectively utilizes partially annotated dataset. The experiments using partially annotated dataset composed 372 CT images demonstrated that our proposed technique significantly improved segmentation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源